Minimum volume cusped hyperbolic three-manifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum Volume Cusped Hyperbolic Three-manifolds

This corollary extends work of Cao and Meyerhoff who had earlier shown that m003 and m004 were the smallest volume cusped manifolds. Also, the above list agrees with the SnapPea census of one-cusped manifolds produced by Jeff Weeks ([W]), whose initial members are conjectured to be an accurate list of small-volume cupsed manifolds. Let N be a closed hyperbolic 3-manifold with simple closed geod...

متن کامل

Minimum-volume Hyperbolic 3-manifolds

The classification of small-volume hyperbolic 3-manifolds has been an active problem for many years, ever since Thurston suggested that volume was a measure of the complexity of a hyperbolic 3-manifold. Quite recently in [GMM3] the author along with David Gabai and Robert Meyerhoff used a geometrical construction called a Mom-n structure to tackle the classification problem, and succeeded in sh...

متن کامل

The Minimal Volume Orientable Hyperbolic 2-cusped 3-manifolds

We prove that the Whitehead link complement and the (−2, 3, 8) pretzel link complement are the minimal volume orientable hyperbolic 3-manifolds with two cusps, with volume 3.66... = 4 × Catalan’s constant. We use topological arguments to establish the existence of an essential surface which provides a lower bound on volume and strong constraints on the manifolds that realize that lower bound.

متن کامل

Volume and Homology of One-cusped Hyperbolic 3-manifolds

Let M be a complete, finite-volume, orientable hyperbolic manifold having exactly one cusp. If we assume that π1(M) has no subgroup isomorphic to a genus-2 surface group, and that either (a) dimZp H1(M ;Zp) ≥ 5 for some prime p, or (b) dimZ2 H1(M ;Z2) ≥ 4, and the subspace of H(M ;Z2) spanned by the image of the cup product H(M ;Z2) × H(M ;Z2) → H(M ;Z2) has dimension at most 1, then volM > 5.0...

متن کامل

Commensurators of Cusped Hyperbolic Manifolds

This paper describes a general algorithm for finding the commensurator of a non-arithmetic hyperbolic manifold with cusps, and for deciding when two such manifolds are commensurable. The method is based on some elementary observations regarding horosphere packings and canonical cell decompositions. For example, we use this to find the commensurators of all non-arithmetic hyperbolic once-punctur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Mathematical Society

سال: 2009

ISSN: 0894-0347

DOI: 10.1090/s0894-0347-09-00639-0